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Abstract—In this paper, a piezoelectric analogy theorem is proposed, in which a piezoelectric body
is represented as being composed of two fictitious bodies, an elastic body and a rigid dielectric
body. An electric and elastic multipole approach for the treatment of various defects (dislocation,
inhomogencity, ...) in finite piczoclectric media is then developed. It is shown that the clectric and
elastic coupling effects, the boundary effects, and the defects may be considered uniformly as sources
of permanent and induced electric and elastic multipoles.

1. INTRODUCTION

As early as in 1880, it was discovered by Pierre and Jacques Curie that certain crystals
may, when stressed, produce an electric field, or when subjected to an electric field, deform.
Such phenomena, known as piezoelectric effects, have been widely used in technology.
Some recent trends are in biomechanics, for instance, the investigation of the regeneration
and the remodelling properties of bone tissue by considering its elastic and electric
behaviours. The piezoelectric behaviour of bone tissue is assumed to be the main causes
of its bioelectric activitics. A comprehensive list of works in this area may be found in the
literature (Cady[ 1], Tiersten[2], Maugin[3], Nelson[4], Guzelsu and Demiray[5], etc.). In
this paper, the physical and mechanical behaviours of various defects in finite piezoelectric
media will be studied.

It is becoming known that the problems of different types of defects in various materials
may be treated in a uniform way by using the concept of multipoles also sometimes called
the Green’s function representation (Kovacs[6], Hsieh et al.[7], Zhou and Hsieh[8,9]).
The multipole approach is based firstly on the obtainment of fundamental solutions to the
basic ficld equations of the diffcrent materials. Unfortunately, such a fundamental Green’s
function solution does not yet seem to exist for piezoelectric materials not only because
the basic ficld equations in piezoelectricity are coupled but also because piezoclectric
materials are always anisotropic. To overcome these difficulties, a piezoelectric analogy
theorem is first proposed, in which a piezoelectric body is represented as composed from
two fictitious bodies, an elastic body and a rigid dielectric body, both with the same shape
as the piezoelectric body but with different boundary conditions and different sources and
loadings. By means of this theorem, an electric and elastic multipole approach for the
unified treatment of the physical behaviours of various defects in finite piezoelectric media
is developed.

2. BASIC FIELD EQUATIONS AND BOUNDARY CONDITIONS IN PIEZOELECTRICITY

It has been known that polarizable solid materials, when deformed, may exhibit
electrical phenomena, and vice versa, piezoelectric deformation is directly proportional to
the applied electric field. Such phenomena when they occur are always associated with
anisotropic solids which do not have a centre of symmetry. The basic field equations in a
classical linear theory of piezoelectricity[2,10] may be given as follows.
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Constitutive equations

tij = Cijul,, — €mijEm (1)
Py = yuk + e )
where t;; is the stress tensor which is symmetric, u, the vector of the elastic displacement,
E, the vector of the electric field, and P, the vector of the electric polarization. The elastic
moduli C;;, measured at constant (zero) electric field, the dielectric susceptibility
measured at constant (zero) strain, and the piezoelectric moduli e, ;; have the following

symmetry properties, respectively
Cijkl = Cjild = Cijlk = Cklij (3a)
Cm.ij = €m.jis Akt = Xik (3b)

in which one has used a dot to distinguish the symmetric part of the indices (ij} of the
piezoelectric moduli e, ;; from the index (m). By introducing the electric displacement

D= P, + & E, (4)
where ¢, is the permittivity in vacuum, eqn (2) may also be written as
Dy = eyE; + ey 4 (5)
in which
& = Yut T €0l (6)
is the dielectric permittivity of the material.
Quasi-static Maxwell's equations
V-D=p,, inV 7
VxE=0, or E=-V¢, inV (8)
where ¢ is the electric potential and p, is the volume density of free charges, which in
general does not exist since the piezoelectric bodies, which are dielectric, are electrically

neutral. However, we still keep this p, term in eqn (7) for the moment.

Equilibrium equations
where f; is the mechanical body force.

Introducing eqns (1), (5) and (8) into eqns (7) and (9), we arrive at four field equations
for the displacement vector u, and the electric potential ¢

Cijuth, ), + emijmj + ;=0 (10)
e ik — Em.ijUijm + Pe = 0. (11)

These differential equations should be completed by the boundary conditions. If on a part
of the body dV,, displacements and on the complementary part éVr., tractions are prescribed
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u,=Ux), ondV, (12)
tjn;=TAx), ondVy,dVrudV, =0dV. (13)
Suppose that on 0V, the electric potential and on dV,, the surface charges are given as
¢ = O%x), ondV, (14)
Dyny = a(x), ondV,, oVyu oV, =aV. (15)

The field equations, eqns (10) and (11), are coupled. The solution of the system of equations,
therefore, in general poses serious mathematical difficulties. If the material contains some
defects, the problem is even more difficult. In the following sections, an appropriate
(multipole) method will be proposed to solve some dislocation and inhomogeneity problems
in piezoelectricity. Such a method is based on an analogy theorem which we shall first
derive.

3. AN ANALOGY THEOREM IN QUASI-STATIC PIEZOELECTRICITY

It is known that the Green’s function method has been successfully used by many
researchers in different areas to treat various problems, for instance, the multipole approach
has been developed to uniformly treat the problems of different types of defects in various
materials[6-9, 18]. In order to use the Green’s function method for a specific material,
fundamental solutions to the basic field equations must be obtained. Unfortunately, such
a fundamental solution does not yet seem to exist for any practically used piezoelectric
materials not only because the basic field equations in piezoelectricity are coupled but also
because piezoelectric materials are always anisotropic.

Now the question is: is there any possibility of developing a multipole approach to
treat some defect problems in piezoelectric materials although the corresponding Green’s
functions are not available? To answer this question, an analogy theorem in quasi-static
piezoelectricity will first be proposed in this section. The idea is analogous to the Duhamel-
Neumann analogy in quasi-static thermoelasticity.

This analogy theorem (proved in Appendix A) may be stated as follows: consider three
bodies of exactly the same shape but with conditions prescribed as shown in Fig. 1. Then

1 2 1) . 42 1 1
W=, ) = D+ e 16)
1 1
V=g, DY =D + ehuf). an

This theorem means an analogy between a piezoelectric body and two fictitious bodies,
an elastic body and a rigid dielectric body both with exactly the same shape as the
piezoelectric body but with different boundary conditions and different sources.

Now, by means of this theorem and using the elastostatic and electrostatic reciprocal
theorems, we can obtain the following system of integral equations instead of the differential
field equations, eqns (10) and (11)

d(x) = J. p.Gedx’ + J el ,G° — ¢G%) 4 dX’
v v
- J et jxG° dx’, inV (18)
v

and
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Fig. . An analogy between a piezoelectric body (1) and two fictitious bodies, an elastic body (2)
(2 = ¢! = 0) and a rigid dielectric body (3) (C**' = ¢'* = 0).

Up(X) = J‘f}Gim dx’ + J Cijului 1 Gim — UG 1) j AX
v v

+ J‘ e,,,-_,»t;b_UG,-,,, dxl, inVv (]9)
14

in which the Green’s functions G¢ and G,,, are defined in eqns (B2) and (B9), respectively
(see Appendix B). The Green’s functions defined in the fictitious bodies are available for
certain piezoelectric materials. For instance, we have the exact analytical solution of the
Green’s functions for crystals with hexagonal symmetry, such as CdS, a piezoelectric
semiconductor used in delay lincs and signal processing (Kroner[11] and Willis[12]). In
general, various schemes to cvaluate these Green’s functions are also available, such as
the perturbation method[13], Fredholm’s technique[14] and the Fourier transform
technique[15]. By means of these two equations, a multipole approach will be developed
to solve some defect (dislocation, inhomogeneity, ...) problems in piezoelectric materials.

4. DISLOCATION IN PIEZOELECTRIC MEDIA AS A SOURCE OF ELECTRIC AND ELASTIC
MULTIPOLES

Dislocations as sources of internal stresses often exist in crystals. The elastic fields
caused by dislocations in various states of motion in bodies of various materials and
geometries have been studied considerably (Hirth and Lothe[16]). The dislocation theory
has been developed by many scientists to explain not only the mechanical but also the
optical and electromagnetic properties of crystals (Nabarro[17]). This section is concerned
with the study of the electric and elasti¢ fields caused by a mechanical dislocation in an
infinite piezoelectric medium.

According to the Volterra model, the dislocation (line defect) is defined as a part of
the boundary of a slip plane S, which is embedded in the material. The strength of the
dislocation is described by the Burgers vector b, which is defined as

by = ugls+ — uyls-. (20)

Now using eqn (18) in the absence of free volume charges p, = 0, one gets
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¢(x) = J‘ ek,ijbiG.ek' dSJI - J‘ ek','ju,'G'ek'j, dx, (2])
S v=
and using eqn (19) in the absence of mechanical body forces, one has
Up(X) = "j bicijlekm,l' dS} + j en.ij¢G|'m,j'n’ dx’ (22)
s ye

in which one has used the continuity conditions of the electric potential and of the normal
component of the electric displacement D, across the slip surface S. The physical meaning
of eqn (22) is that the elastic displacement field caused by the dislocation in the piezoelectric
medium may be represented by a field which is produced by a surface distribution of
permanent elastic monopoles with surface density

%‘};_k,l = — C"j“binj, on S (23)

and a volume distribution of the induced elastic dipoles with volume density

d—d}—;i;"ﬂ = 2e,;i¢, inV® (24)
which comes from the contribution of the electric field coupled with the elastic field. These
elastic multipoles are now distributed in a corresponding elastic medium instead of the
piezoelectric medium. Similarly eqn (21) means that the electric potential caused by the
disiocation may be represented by a scalar field created by a surface distribution of
permanent electric dipoles with surface density

dP;
a’:g'% - ek.ijbinj, OnS (25)

and a volume distribution of the induced electric quadrupoles with the volume density

% = —2e ;Ui iny® (26)
which are distributed in a corresponding rigid dielectric medium instead of the piezoelectric
medium. The induced elastic dipoles and the induced electric quadrupoles may be
determined by a closed integral equation obtained by substituting eqn (21) into eqn (22),
or inversely, the result of which may be solved by some appropriate methods (such as an
iteration approach or numerical methods). As a simple example, we shall solve the
dislocation problem formulated above by an iteration scheme. Suppose that the piezoelectric
moduli e, ;; are proportional to a small parameter 4, i.e.

€mij = le;n.ij 27

and that the solutions, u(x) and ¢(x) of the problem may be expressed as

ufx) = 20 () (28)

O

o(x) = Y A"¢"(x). (29)

n=0
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Fig. 2. A finite piezoelectric body with an inhomogeneity.

By substituting eqns (27), (28) and (29) into eqns (21) and (22), respectively, it can be shown
that at the zeroth-order approximation, Volterra’s classical result is recovered while at the
first-order approximation, the electromechanical fields outside the singularity region caused
by this mechanical dislocation may be approximately obtained as

ui(x) = —f biCijkIka.l' ds; (30)
s

d(x) = ek.ij(f b;G%: ds} + J (f bmcmnslei.l'dSill> fk'j' dx’>. (31
s vo-5 \Js

S. INHOMOGENEOUS INCLUSION IN FINITE PIEZOELECTRIC MEDIA AS SOURCE OF
ELECTRIC AND ELASTIC MULTIPOLES

Consider a finite piezoelectric body with the elastic moduli C,j,, the piezoelectric
moduli e,, ;;, and the dielectric permittivity &, in which there is an inhomogeneous inclusion
occupying a region ¥; with the elastic moduli Cf,;, the piezoelectric moduli e}, ;;, and the
dielectric permittivity & (see Fig. 2).

By introducing the following denotations:

CijudX) = Cijuy + AC,j(x) (32)
ACj = Cly ~ Ciju (33)

e ifX) = €pi; + Al (X) (34)
Aey ;= emii— €mij (39)
&dX) = £y + Agyo(x) (36)
Agy = €8 — &y 37

in which the indicative function a(x) is defined by
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_ ), xeW
a(x) = {O, otherwise (38)

then, the constitutive equations for the inhomogeneous piezoelectric medium may be
written as

tij = Cii(Xug s + e, i{X)d (39)
Dy = —eu(X)d, + e if{x)u; ;. (40)

The field equations, eqns (10) and (11), may be expressed as (in the absence of external
body forces and volume free charges)

Cijathisj + emifomj + 4 =0 41
e ik — €iflijx + P =0 42)
where we have introduced the induced volume charge defined by
Pt = Aoyl wa(x) + b ,(X)) — Aey ;{u; jol(x) + u; 20,4(X)) (43)
and the induced body force defined by
it = AC jufuy 1 2(X) + e (X)) + Aey D 4 jo(X) + @ 40 (X)) (44)
The physical meaning of such a manipulation may be explained as that the inhomogeneous

inclusion is replaced by a distribution of induced volume charges and a distribution of
induced body forces.

Now, identifying the induced volume charge p'™ and the induced body force /" with
the p, and f; in eqns (18) and (19), respectively, we get

o(x) = —J‘ Din,G¢dS’ — J e Gon, dS' + j e.iju; G dx’
oV av v
+ J (—Ae“¢.l + Ae,‘.,»jui'j)Gf,‘n dx', in |4 (45)
4
and

Up(X) = f tijanim s’ — j Cijkluinm,l'nj ds’ — J. ek..’jd’,kGim.j' dx’
av oy

|4

+ J (ACijutty s + Aey ;;0 )G, j AX', inV (46)
Vi

in which the following interface conditions have been used:

(1) the electric potential ¢ and the normal component of the electric displacement D,
are continuous across the interface S;;

(2) the elastic displacement u and the normal component of the stress t, are continuous
across the interface ;.

Using the Green—Gauss theorems in eqns (45) and (46), then these may be rewritten as
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a

¢(X) = —J\ O'Ge dS' e J EkI(DOGfI'nk dSl - J Sk‘(bG?l'nk dS’
v, Wy Vg

~

- Din G dS' + J

Jiv,, v,

ek'ijU?G_ek'nde' + J‘ ek_,'ju,'G?k'nde’
vy

— | e iuiGhypdx’ + f (Aey;ju; — De jd)n; G4 dS'

44 S

+ | (Aeyd — Aey ;ju)GY; dX,

47

inV 47

C;j,‘,U?G,‘,,,‘,'nde' + J\ tijanim dS'

oV,

nlX) = j T?GipdS — J
vy 1%

- j Cijkluinm.l'nde, - f ek.u(DOGim.j'"k ds’
oV

v,

- J‘ €4.ijPGim M dS + J €.ij®Gim,ji AX’
v, v

L4

+ J (ACijuy + Aeyij@)n,Gim, j dS’
S

- J (AC;juty + Dey;j9)Gim, jr AX',
Vi
inV. (48)

The physical meaning of eqns (47) and (48) may be explained respectively as follows.
Equation (47) means that the electric potential produced by an inhomogeneous inclusion
in a finite piezoelectric body subjected to certain boundary conditions may be represented
by a distribution of electric multipoles in a fictitious rigid uniform dielectric medium with
the dielectric permittivity ¢, (sec Appendix B). This mcans that the inhomogeneous
inclusion is replaced by a distribution of induced surface electric dipoles

dPe
d—S‘,‘ = (Aeyjp — Ae, u)n;,  onS, (49)

and induced volume electric quadrupoles

dpy; _

ax’ Z(Aekj¢ ~ Aey ;u), in k. (50)

The electric and elastic coupling effects are replaced by a distribution of permanent and
induced surface electric dipoles
dp:

d_sl = e,‘_,-jU?nj, on 6‘/;‘ (51)
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dp;
E‘S_f = ek'iju,-nj, on aV, (52)

and a distribution of induced volume electric quadrupoles

dpry; .
dxﬁj = =204, inV. (33)

The boundary effects are replaced by a distribution of permanent and induced surface
electric charges

% = —g, ondV, (54)
dpP*
ds’ = (e, — ek.ijui,j)nk, on 5V¢ (55)

and a distribution of permanent and induced surface electric dipoles

dpe
d_sf = —g,®%n,, ondV, (56)
dpe¢
d_sf = —g ¢n, ondV,. (57)

Similarly, eqn (48) means that the elastic displacement fields caused by the inhomogeneous
inclusion in a finite piezoelectric body subjected to certain boundary conditions may be
represented by a distribution of clastic multipoles in a fictitious homogencous elastic
mcdium with the elastic moduli C;, (sce Appendix B), that is the inhomogencous inclusion
is replaced by a distribution of induced surface elastic monopoles

dP;
d_S’J = (AC;juy, + Aeyh)n;, onS§, (58)

and a distribution of induced volume elastic dipoles

ax - —2AC jui + Aey ;0), inW. (59)

The electric and elastic coupling effect is replaced by a distribution of permanent and
induced surface clastic monopoles

= — ,®n, ondy, (60)

By —epm,  ondv, (61)

and a distribution of induced volume elastic dipoles
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dp, :
dx{k = 2ek"'j¢, n V (62)

The boundary effects are replaced by a distribution of permanent and induced surface
forces

%% =T, ondVy (63)

dp;
e (Cijuatticy + emij® mit, ondV, (64)

and a distribution of permanent and induced surface elastic monopoles

dp

55 = —CipUn;,  ondv, (65)
%%‘f—' = — Ciptitj, ondVr. (66)

It has been shown that by means of an analogy theorem, the inhomogeneity problems in
a finite piezoelectric body may be considered as the problems of finding a distribution of
the induced electric and elastic multipoles defined respectively in a fictitious rigid uniform
dielectric body and a fictitious homogeneous elastic body, in which the induced electric
and elastic multipoles may be determined by a system of linear integral equations, eqns
(47) and (48), that in general, may be solved by some numerical methods.

The problems of dislocations and cracks in a finite piezoelectric body may be treated
in the same way[8,9].

6. CONCLUSIONS

In this paper, it is shown that the electric and elastic coupling effects, the boundary
effects, and the defects may be considered uniformly as sources of permanent and induced
electric and elastic multipoles. The physical quantities as interaction energy, etc....can
then all be described in terms of electric and elastic multipoles. The specific multipoles are
given in terms of “input”. The results are given in a form particularly convenient for
computational analysis.
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APPENDIX A
The verification of the piezoelectric analogy theorem proposed in Section 3 may be given as follows. Suppose
that we find an elastic displacement field u'® in a fictitious elastic body and an electric potential field ¢'> in a

fictitious rigid dielectric body satisfying all the conditions described in Fig. 1 (see body (2) and body (3)),
respectively, i.e.

i+ =0t =cflud (A1)

u? = U2, ond¥,

A2
P, =TMD,  ondV; (A2)

and

D=0, D= —ddgp Ay

¢(3) = QO(J)’ on ay‘

Ad
DP¥n, =6, ondv,. A9

We shall prove that the electromechanical ficlds u'*, ¢!’ given by eqns (16) and (17) satisly the piezoelectric field
cquations and the boundary conditions for the corresponding piczoelectric body described in Fig. 1 (scc body
(1)). By the constitutive cquations of piczoclectricity

tf)) = CiRui! + eQ)ol
DY =~ + eftu)
and using eqns (16) and (17) and eqns (A1) and (A3), we get
=P+ ellplay =1, inV
Dl = p + elfull) = o1, inv.

Using eqns (A2) and (A4), we have

u5~” = U?(Z) P U?(”, on 5V,

tPn; = T{® 4 eV g'in; = TYD,  ondV;
and

HV = @O = o), ond¥,
Di'n, = ¢ + eultn; = 6!V, ondV,.

It is shown that the electromechanical fields given by eqns (16) and (17) are the solutions of the piezoelectric
body subjected to the loadings and boundary conditions described in Fig. 1. Q.E.D.

APPENDIX B. STATIONARY ELECTRIC AND ELASTIC MULTIPOLES

Consider M point charges located in a small volume centred at x’ of an infinite uniform dielectric medium
with dielectric permittivity ¢;;. The resulting electric potential may be obtained as

)= ¥ a'Gxx + & (B1)

a=i
where x’ + d* is the position vector of the ath point charge ¢, and G* is the Green's function satisfying
£,G%(x, X)) + & (x - x) =0 (B2)

which may be regarded physically as the electric potential produced by a unit point charge located at x'.
Expanding the Green’s function in a Taylor series about (x, x’), we get
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L . ,
¢ = ) b O ) (B3)

k=0

where we have introduced the electric multipoles of order &
M
P, = ) q°d; ...d3. (B4)
a=1

For k = 0, we get the resultant charge of the point charge array

M
PP=3 q (BS)
a=1
For k = 1, we gct the electric dipole
M
Pi=Y ¢'d (B6)
x=}

..., ele.
Similarly, consider N point body forces acting in a small volume centred at x’ of an infinite homogeneous
clastic medium with clastic moduli C;j,,. The resulting displacement ficlds may be obtained as (Siems[18])

N
Un(X) = Y f2G A% X + ¢
a=]
a l ,
= Z -'Pjs,A,.x_ij.s‘l.,,s.(xvx) (B7)
n=0 n
where the clastic multipoles of order n are defined as
N
Py =Y L (BR)
a=1

If the resultant force of the point force array is zero, we have P; =0, and call P, P, ... clastic monopolc,
clastic dipole, ..., respectively. The Green's function G, satisfying the cquations

CiiiGim i f%. X} + 8(x — X)8,,, = 0 (B9)

may be regarded physically as the displacement along the x;-axis at x produced by a unit point body force
applied along the x,,-axis at x'.



